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Abstract. We examine the behaviour of the concentration profiles of particles with repulsive interactions
diffusing on a host lattice. At low temperature, the diffusion process is strongly influenced by the presence
of ordered domains. We use mean field equations and Monte-Carlo simulations to describe the various
effects which influence the kinetic behaviour. An effective diffusion coefficient is determined analytically
and is compared with the simulations. Finite gradient effects on the ordered domains and on the diffusion
are discussed. The kinetics studied is relevant for superionic conductors, for intercalation and also for the
diffusion of particles adsorbed on a substrate.

PACS. 05.50.+q Lattice theory and statistics: Ising problems – 05.60.+w Transport processes theory
– 68.35.Fx Diffusion; interface formation

1 Introduction

Transport in superionic conductors [1], ionic intercala-
tion [2] or diffusion of adsorbed atoms on surfaces [3,4]
are phenomena which can frequently be modelled, in a
first approximation, as a distribution of particles evolving
in a periodic potential, either through a host lattice or on
a substrate.

Much research effort has been devoted to the study of
the general aspects of the dynamics of first-order phase
transition in non-equilibrium systems [5]. In the case of
repulsive interactions, the transitions are order-disorder
transitions with the appearance of order on sublattices.
In non- equilibrium systems, where the concentration is
non-homogeneous, the diffusion processes will be compli-
cated by the appearance of these ordered domains, in a
certain concentration range. Only a few studies [6–9,3]
have been devoted to this behaviour, in spite of its im-
pact on intercalation, surface diffusion and interdiffusion
problems.

During the last ten years the behaviour of interca-
lation processes in superionic conductors have attracted
much interest both experimentally and theoretically (see
for example Ref. [1]). During intercalation, the ions diffuse
in the periodic potential of the host lattice. This lattice
does not in general remain inactive: deformations lead to
various physical complications of the intercalation process
(effective anisotropic long-range coupling between the dif-
fusive ions, coupling between neighbouring layers etc.). In
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addition, the diffusion process is not always in a hopping
regime and a fluid like approach may be more appropri-
ate [10].

A closely related phenomenon is the surface diffusion of
adsorbates, which diffuse in the periodic potential of the
surface. This phenomenon is important in relation with
catalysis, corrosion and crystal growth problems. In these
situations, the diffusion process is also influenced by the
presence of ordered regions [4].

Here we will only consider systems that can be well
described by a hopping regime. In a hopping regime, even
in presence of interactions, the barriers that the parti-
cles have to overcome are always much higher than the
thermal energy of the particle [11]. This is the case for in-
stance for lithium intercalated titanium diselenide [12], or
for lithium-aluminium systems [13], at not too high tem-
peratures.

The understanding of the formation of ordered states
and the non-linear diffusion on a lattice in the presence of
repulsive interactions progressed considerably at the be-
ginning of the seventies when Sato and Kikuchi applied
their Path Probability Method to β-alumina solid elec-
trolytes [14]. Applications and numerical verifications of
this method were given by Murch and Murch and Thorn
[15]. In this study, the Coulomb repulsive interaction be-
tween the ions is supposed to be screened in such a way
that the remaining interaction is short-range: in practice
only nearest neighbour repulsive interactions have been
taken into account.
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Other methods were also developed, in particular to
understand tracer diffusion. Being perturbative or self-
consistent methods, they are in general limited to low or
high concentrations of diffusing particles, the intermediate
case (where phase transitions appear) being very difficult
to study. A review can be found in reference [16].

At the same time, Monte-Carlo simulations have been
performed. Natori et al. [6] studied the diffusion of re-
pulsive particles which generates ordered structures at
low enough temperature. Sadiq and Binder [7] performed
Monte-Carlo simulations of the same problem, but with
a symmetrical “Kawasaki dynamics”, they showed clearly
that the system evolves towards an ordered state. In such
a model the collective diffusion coefficient is symmetrical
with respect to a particle- vacancy exchange.

The purpose of the present paper is to examine in
more detail the behaviour of particles with repulsive near-
est neighbour interactions diffusing in a periodic and fixed
host lattice, out of equilibrium and in the hopping regime.
The aim is not only to determine the effect of ordered
regions, but also to examine the effect of finite concen-
tration gradients as they appear in the dynamics of non
homogeneous systems. We use primarily a mean field ap-
proximation and will compare the results with data from
Monte-Carlo simulations. The paper is organized as fol-
lows: in Section 2, we present the Monte-Carlo calcula-
tions of the diffusing particles on a square lattice from
which we determine an effective diffusion coefficient; in
Section 3, we recall the main features of the lattice gas
model, introduce the mean-field approximation and the
idea of simultaneously evolving sublattices and we state
the main results of the order-disorder transition at equi-
librium; in Section 4, we examine the out-of-equilibrium
order-disorder dynamics in the framework of our mean-
field approximation. Finally, Section 5 is devoted to a com-
parison between Monte-Carlo calculation and mean-field
scaling results and to the discussion.

2 Monte-Carlo calculations

The most direct investigation of the evolution of the aver-
age concentration profile and of the ordering at low tem-
perature is by Monte-Carlo simulations [9,15]. Therefore
we first present the results obtained from the dynami-
cal evolution towards equilibrium of an initially inhomo-
geneous lattice gas. We consider a square lattice which
is semi-infinite in one direction, the diffusion direction
(x- or horizontal direction) and which is finite and pe-
riodically bounded in the other (y- or vertical direction).
At time t = 0, the lattice is empty, except for the x = 0
row, whose concentration is maintained fixed and equal to
1 at all times. Defining p(x, t) as the probability to find
a particle at site x at time t, one has {p(x = 0, y, t) ≡
1, p(x > 0, y, t = 0) ≡ 0}. In the simulations, p(x, t) is the
occupation at site x = (x, y), averaged over many realiza-
tions. For t > 0, the particles diffuse freely into the x > 0
plane, and we will calculate the concentration p(x, t) as a
function of x and t, averaged over all y.

Fig. 1. Monte-Carlo calculation of the domain formation on
the square lattice due to the repulsive interaction below the
critical temperature. A window of average concentrations be-
tween p = 0.75 and p = 0.5 along the x-axis is shown. Two
types of domains (A respectively B) form around p ∼= 0.5, cor-
responding to the occupation of the two sublattices.

Instead of the open boundary conditions one may also
consider stationary non-equilibrium states with finite fixed
boundaries in the x-direction: {p(x = 0, t) ≡ 1} and
{p(x = L, t) ≡ 0}. Such a system in principle has the ad-
vantage that the effective diffusion coefficient Deff can be
obtained directly from the stationary concentration pro-
file. One expects that the results do not depend on the
boundary condition in the limit of small gradients respec-
tively large L. The following equation describes the aver-
age density,

∂p(x, t)

∂t
= div(Deff(p)grad p) ≡ 0 =

∂

∂x
Deff(p)

∂p

∂x
(1)

which, for fixed boundary conditions, yields

Deff(p) =
−j0
∂p/∂x

(2)

where j0 is the stationary current in the system. Because
of the (physically motivated) hopping rate, w({n}) =
w0e−ε

∑
i ni/kT , where ni = 0, 1 is the occupation number

and the sum is over nearest neighbour sites, the gradi-
ent in the intermediate concentration range is rather large
and therefore the data of the simulations are quite noisy
(for the chosen form of w({n}) an isolated vacancy dif-
fuses much faster than an isolated particle). Therefore the
diffusion coefficient Deff can be determined more reliably
from simulations with semi-infinite boundaries.

Below the critical temperature (the actual simulations
were performed at T = 0.88Tc) we observe, as expected,
the appearance of ordered regions. A typical structure
is shown in Figure 1, where an actual configuration be-
tween a concentration p = 0.75 at the left and p = 0.5
at the right is represented. The progressive appearance
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of the two kinds of ordered domains A and B near p ∼=
0.5 is clearly visible. These domains, due to the nearest
neighbour repulsion, correspond to the black, respectively
white, squares of a chessboard. Figure 2, shows the evo-
lution of the concentration profile, below the critical tem-
perature (here ε/kT = −2.0; the corresponding critical
temperature is ε/kTc = −1.76), for various times rang-
ing from 256 MCS to 32768 MCS (one Monte-Carlo step,
MCS, corresponds to one diffusion trial per particle). In
contrast with the case of attractive interactions where the
diffusion coefficient becomes negative in the miscibility
gap and a 4th-order differential master equation needs to
be considered, for the case of repulsive interactions the
usual diffusion equation for each of the sublattices and
with an effective diffusion coefficient adequately describes
the asymptotic large time evolution. As a consequence we
expect scaling of the concentration profiles with the re-
duced coordinate x/

√
t. This is verified in Figure 3, where

one can see that for large times the profiles collapse into a

Fig. 2. Average concentration profiles p(x) from Monte-Carlo
simulations for diffusion with repulsive interaction (T/Tc =
0.88) for a semi-infinite system at different times indicated in
the inset.

Fig. 3. Same data as in Figure 2, now plotted in scaled form:
p vs. x/

√
t. For large times all the profiles collapse on a unique

master curve.

Fig. 4. Order parameter η (difference of sublattice magneti-
zation) as a function of p from Monte-Carlo simulations. η 6= 0
in the range between p ∼= 0.3 and p ∼= 0.6. The transitions
rounded by finite gradient respectively finite time effects.

single scaling form when plotted against the scaling vari-
able. This result will be compared with the mean-field
approach below. It is also possible to extract the order
parameter as a function of the concentration from the
Monte-Carlo data. The order parameter is defined as the
difference between the average concentration on the sub-
lattices A and B:

η =
pA(x)− pB(x)

2

(the average concentration p, being in this case (pA(x) +
pB(x))/2).

In Figure 4, we show the η(p) curves extracted from the
Monte-Carlo calculations, at three different times in the
simulations (they are calculated from the absolute value
of the difference of the sublattice magnetization over small
domains of size 2×2 to 16×16, for a given x and averaged
over y). At large enough times the curve tends towards
an invariant profile. Notice that η(p) vanishes smoothly
around p ∼= 0.4 and p ∼= 0.6, in contrast with the equilib-
rium phase diagram, for which η(p) vanishes in a singular
fashion (a more detailed discussion is given in Sect. 4.2
below). This is due to finite gradient and finite time ef-
fects as well as due to the finite domain averaging used to
determine η(p) in the simulations. An effective diffusion
coefficient Deff can be determined from the Monte-Carlo
calculations in different way. We may use Fick’s law and
calculate the average current between successive rows; this
method is rather noisy. A second approach supposes that
the asymptotic scaling behaviour has been reached, and
that the Boltzmann equation [17] for diffusing particles is
valid. This equation is obtained by substituting p(u) with
u = x/

√
t for p(x, t) in the diffusion equation. We are

then led to a Boltzmann-Matano [17,18] type of analysis.
A simple calculation gives

Deff = −
up(u) +

∫ ∞
u

p(u)du

2dp/du
(3)
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Fig. 5. Diffusion coefficient as a function of p, measured from
Monte-Carlo simulations at T/Tc = 0.88, for different succes-
sive times. Due to the repulsive interaction, Deff increases when
p increases, except possibly close to p = 1 where the vacancies
availability goes to zero.

which can be determined directly from the numerical cal-
culations. The results for various times at a temperature
given by ε/kT = −2 (T = 0.88Tc) are shown in Figure 5.
The diffusion coefficient has been normalized such that
Deff = 1 for p = 1. Below, we will compare these results
with the results from the mean field approach in the lattice
gas model.

3 The lattice gas model, a mean-field
analytical approach

The master equation which describes how a general config-
uration {n} = {n1, n2, . . . ni, nj, . . . nN} evolves with time
can be written as,

∂

∂t
P ({n}, t) =

∑
{n′}

{W ({n′} → {n})P ({n′}, t)

−W ({n} → {n′})P ({n}, t)} (4)

where P ({n}, t) is the probability to find the configuration
{n} at time t, and W ({n′} → {n}) is the transition rate
from {n′} to {n} and is defined by

W ({n′} → {n}) =

=
∑
i,j

wij({n})n
′
i(1− n

′
j)δnj n′iδni n′jδ

i,j
{n}{n′} (5)

where wij is the jump probability from site i to site j,
which depends on the particle environment; the term
ni(1 − nj) where ni = 0, 1 assures that site i is occu-
pied while site j must be empty; this term expresses the
fact that double occupation is forbidden. An operator ni
with ni|{n′}〉 = n′i|{n

′}〉 may be conveniently introduced.

If we are only interested in the evolution of the average
concentration pk ≡ 〈nk〉 at site k, equation (4) reduces to

∂pk

∂t
≡

∂

∂t
〈nk〉 ≡

∂

∂t

∑
{n′}

nkP ({n}, t)

=
∑
j

〈wjk({n})nj(1− nk)− wkj({n}nk(1− nj)〉. (6)

For simplicity, the jumps are supposed to be limited to
nearest neighbour sites k + a′ of any site k. It is then
convenient to introduce a current operator Jk,k+a({n})
along the link k → k + a, so that equation (6) becomes,
taking j = k + a,

∂pk

∂t
= −

∑
a

〈Jk,k+a({n})〉 (7)

where the average current in the bond (i, j) is

Jij({p}) ≡ 〈Jij({n}〉 = 〈wijni(1− nj)− wjinj(1− ni)〉.
(8)

Equation (7) is nothing but the discrete version of the
conservation law ∂p/∂t = divJ .

Here we are interested in lattice gases with repulsive in-
teractions for which an order-disorder transition appears
at some critical temperature Tc. As indicated above, on
the square and simple cubic lattice there is symmetry
breaking with respect to two interlaced sublattices {A}
and {B}; they will be distinguished by their “colour” A
and B (as in Fig. 1). The occupation probabilities p on
these sublattices will be identified by an upper index A or
B, pA

i and pB
j with i ∈ {A} and j ∈ {B}; k will designate

any site i or j. Equations (7,8) then become

∂pA
i

∂t
= −

∑
j=i+a

〈J AB
ij ({n})〉,

∂pB
j

∂t
= −

∑
i=j+a

〈J BA
ji ({n})〉

(9)

with a current defined by

JAB
ij ≡ 〈J

AB
ij ({n})〉

= 〈wAB
ij nA

i (1− nB
j )− wBA

ji nB
j (1− nA

i )〉. (10)

3.1 The simultaneously evolving sublattices

As the designation of the colours A and B is arbitrary, it
is very convenient to consider the two sublattices for each
site k simultaneously: the A sublattice on the ‘white’ sites
(of the chessboard) are coupled to the B sublattice on the
‘black’ sites and similarly the B sublattice on the ‘white’
sites are coupled to the A sublattice on the ‘black’ sites.
Both evolve independently from one another. If the initial
configurations of the two sets of coupled sublattices are
chosen very close to each other and to a constant value,
and if they evolve together in parallel, the concentration
pA
k for the A- and pB

k for the B-sublattice on each site k
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behaves smoothly at all times. This is indeed confirmed
numerically: pαk and pαk+a (α = A or B) remain close; this
can be interpreted as the fact that no chaotic regime ap-
pears. The properties of such “Simultaneously Evolving
Sublattices” (SES) have been detailed elsewhere [19]. SES
greatly simplifies the analytic expressions that we now de-
velop.

The choice of the averaging procedure for the mean-
field treatment can be motivated by physical or by prac-
tical (i.e. computational) considerations. It will be chosen
in such a way that it is as close as possible to the usual
thermodynamic approach (case I of Ref. [20]). In a first
step the average in equation (10) is reduced to the form,

JAB
ij ({p}) = 〈w̃AB

ij 〉p
A
i (1− pB

j )− 〈w̃BA
ji 〉p

B
j (1− pA

i ) (11)

where there still remains some arbitrariness in how the
average of wij({n}) is taken. We will use this arbitrariness
to agree with well established thermodynamics.

In most applications, the host potential in which the
hopping particles diffuse can be seen as an “egg-box” po-
tential. The associated lattice is the lattice of the potential
minima. The bonds join nearest neighbor sites through a
saddle point. The jump probabilities wij({n}) for a lat-
tice gas hopping model (Eyring absolute regime) are then
essentially functions of the energy difference between its
initial well (site k) and the saddle point (in-between k and
k + a), as seen by the jumping particle. Here we consider
only a nearest neighbour interaction and the saddle point
is supposed at fixed (zero) energy, hence not sensitive to
the occupation of the neighbouring sites. The Hamiltonian
of the system of diffusing particles for a given configura-
tion {n} (in the hopping model, the particles spend most
of their time in the wells) is,

H = −
∑
i,j

εAB
ij nA

i nB
j −

∑
i

εA
i nA

i −
∑
j

εB
j nB

j . (12)

For a short range-repulsive interaction we have, εij =
ε < 0 when {i, j} are nearest neighbours, and zero oth-
erwise. Furthermore we will choose εA

i = εB
j = µe, which

corresponds to a uniform lattice where all the sites are
equivalent. With these conditions, the standard jump op-
erator at temperature T , which leads to Arrhenius jump
probabilities and Boltzmann equilibrium distribution, is a

wAB
ik ({n}) = w0 exp−

ε

kT

∑
a′ 6=k−i

nB
i+a′ (13a)

(wA
0 = wB

0 = w0 on a uniform lattice, is the jump proba-
bility of an isolated particle, and the final site is considered
empty in the expression of w).

The jump probability operator can also be written in
a different way [20],

w̃AB
ik ({n}) = w0 exp−

(
s
ε

kT
nB
k

)
exp

(
−
ε

kT

∑
a′

nB
i+a′

)
(13b)

which is equivalent to (13a), due to the fact that the fi-
nal site is empty ((1 − nk) term in (6)). We will choose

here the parameter s equal to zero, to agree with usual
thermodynamics.

3.2 Mean-field approach

When all the operators nk in the expressions for the jump
probabilities wk,k+a have been replaced by their average
concentrations pk (see Appendix A), it is possible to write
the current in a simple form, reminiscent of a Cahn-Hilliard
equation. The current may be written as a function of the
discrete gradient of the activities Ck:

JAB
ij ({p}) = −SAB

ij (CB
j − C

A
i ) (14)

or equivalently as a function of the chemical potentials:

JAB
ij ({p}) = −MAB

ij (µB
j − µ

A
i ) (15)

where

µA
k = kT log CA

k

= −zε(pB
k −

1

2
)− ε

∑
a′

Da′p
B
k + kT log

pA
k

1− pA
k

(16)

and a similar relation for µB by permutation of A and B.
Da is a difference operator, defined by,

Daf(k) = f(k + a)− f(k).

The sum over a′ in (16) is then a discrete Laplacian op-
erator. MAB is the associated mobility, which not only
depends on the average concentration, but also on local
concentration gradients.

3.3 The order-disorder transition

It is very easy to determine the phase diagram of the
order-disorder transition in the mean-field approximation,
from the above expressions. We need it here as a ba-
sis for the dynamics. This simple mean-field approxima-
tion leads only to a qualitatively correct phase diagram.
A better mean-field approach would consist in using the
pair approximation such as the Kikuchi cluster variation
method [14], or the real space renormalization group [21]
(in calculating phase diagrams, the cluster variation
method is frequently more accurate than real space renor-
malization, except may be very close to the critical tem-
perature), while the best results can in principle be ob-
tained via Monte-Carlo methods [22]. But it is not the
purpose here to improve the results on statics.

In Appendix B we recall the main features of the mean-
field phase diagram. The phase diagram corresponding to
the value s = 0, in equation (13b), is shown in Figure 6.
The equilibrium relation between temperature kT , con-
centration p, and order parameter η is given by,

kT (p, η) = −
2εzη

log

(
1−

2η

(p− 1
2 )2 − (η − 1

2 )2

) · (17)
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Fig. 6. Phase diagram of the order-disorder transition on the
square lattice as a function of p, in mean field approximation.

4 The order-disorder dynamics

We have now all the elements to examine the dynamics
of ionic diffusion in presence of an order-disorder tran-
sition in the intermediate concentration range. This dy-
namics has been simulated using the mean-field equations
established above, to be compared with the Monte-Carlo
results.

The mean concentration
∑
k〈pk〉 over a fixed domain of

the lattice is a conserved quantity. From equations
(7, 14), we see that the equation of evolution of the mean
concentration pk is [23],

∂pk

∂t
=

1

2

∑
j

{
SAB
kj (CB

j − C
A
k ) + SBA

kj (CA
j − C

B
k )
}
. (18)

In the case of a centrosymmetric lattice with nearest neigh-
bours jumps, the evolution equation of pk can be written
as a discrete divergence of a current (conservation equa-
tion):

∂pk

∂t
= −

1

2

∑
a

DaJ
AB
k−a,k. (18a)

On the other hand, the order parameter ηk is a noncon-
served quantity, with an equation of motion given by,

∂ηk

∂t
=

1

2

∑
j

{
SAB
kj (CB

j − C
A
k )− SBA

kj (CA
j − C

B
k )
}
. (19)

It is possible to simplify equations (18) and because of
the repulsive interactions to restrict the expansion in the
kinetic equations to second order in the intersite distance
a (to second spatial derivatives in the continuous case) for
slow variations of the concentrations, i.e. at large times.
For the evolution of the average concentration on a cen-
trosymmetric lattice we then obtain

∂pk

∂t
=−

1

2

∑
a

D−a {D(pk, ηk)Dapk

+E(pk, ηk)Daηk} (20)

where,

D(pk, ηk) =
1

2

{
wBA(k) + wAB(k)−Kz(jA

0 (k) + jB
0 (k))

}
E(pk, ηk) =

1

2

{
wBA(k) + wAB(k) +Kz(jA

0 (k)− jB
0 (k))

}
(20a)

with,

wAB(k) = wA(k)pA
k + wB(k)(1− pA

k )

wBA(k) = wB(k)pB
k + wA(k)(1− pB

k )

wA(k) = w0 exp(−KzpB
k )

wB(k) = w0 exp(−KzpA
k )

jA
0 (k) = wA(k)pA

k (1− pB
k )

jB
0 (k) = wB(k)pB

k (1− pA
k );K = ε/kT. (20b)

The lack of a conservation law leads to more complicated
relations for ∂ηk/∂t.

∂ηk

∂t
=− z

(
jA
0 (k)− jB

0 (k)
)

+ F (pk, ηk)∆apk

+G(pk, ηk)∆aηk +
1

2

{
P (pk, ηk)

∑
a

(Dapk)2

+Q(pk, ηk)
∑
a

DapkDaηk +R(pk, ηk)
∑
a

(Daηk)2

}
(21)

where,

F (pk, ηk) =
1

2

{
wAB(k)− wBA(k) + 3Kz(jA

0 (k)− jB
0 (k))

}
G(pk, ηk) =−

1

2

{
wAB(k)−wBA(k)+3Kz(jA

0 (k)−jB
0 (k))

}
P (pk, ηk) = Kz{(1− pB(k))wA(k)− (1− pA(k))wB(k)}

−
K2z2

2
(jA

0 (k)− jB
0 (k))

Q(pk, ηk) = K2z2(jA
0 (k) + jB

0 (k))

R(pk, ηk) =−Kz{(1− pB(k))wA(k)− (1− pA(k))wB(k)}

−
K2z2

2
(jA

0 (k)− jB
0 (k)) (21a)

while ∆a is a discrete Laplacian: 1
2

∑
aD−aDa. Notice that

η(k, t) = 0 is always a solution, but it becomes unstable in
the coexistence region. This can be seen in equation (21)
in which pA(k) = pB(k) gives jA

0 = jB
0 = 0, F = 0 and

P = 0.

4.1 Large time diffusion equation

We now consider the stable solutions. The important point
here is that due to the zeroth term order (jA

0 − j
B
0 ), ηk

rapidly relaxes to its equilibrium value: at late times, when
the local distribution becomes relatively homogeneous, all
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the gradients may be neglected and jA
0 (k) = jB

0 (k) from
(21) and ηk ≈ ηeq(pk, T ) defined implicitly by equation
(17).

Equation (20) then leads to a simplified equation for
the local concentration,

∂pk

∂t
= −

1

2

∑
a

D−a

{[
D(pk, ηeq) +E(pk, ηeq)

∂ηeq

∂pk

]
Dapk

}
.

(22)

This equation is a simple diffusion equation, with an ef-
fective concentration dependent diffusion coefficient,

Deff(pk) = D(pk, ηeq) +E(pk, ηeq)
∂ηeq

∂pk
· (23)

This coefficient takes into account the existence of ordered
domains in the particle distribution. Outside the ordered
region, the effective diffusion coefficient reduces to its or-
dinary definition,

Deff(pk) = D(pk, 0). (23a)

In the case of a homogeneous disordered system, we re-
cover the known expression [3],

D(p) ≡ D(p.0) = a2w0e−Kzp(1−Kzp(1− p))

= a2w0e−Kzp
(

1 +
Tcoex

T

)
(24)

which is of the form [3],

D(p) = Γ (p)a2 {∂(µ/kT )/∂ ln p}T (25)

where Γ (p) is the atomic jump rate; here

Γ (p) = w0e−Kzp(1− p).

The behaviour of the diffusion coefficient is shown in
Figure 8 for various temperatures. We have arbitrarily
chosen the energy E0 in the activated jump probability
of an isolated particle w0 = ν0 exp(−E0/kT ) equal to
E0 = −5ε, in such a way that the various curves may
be distinct but in a reasonable range. We notice here the
abrupt variations of Deff at the boundaries of the order-
disorder transition. This reflects the fact that we used the
equilibrium value for ηeq. Close to the transition point, the
jump is softened by dynamical finite size (finite gradients)
effects which prevent η from relaxing to its equilibrium
value. In particular, these finite gradient effects round the
singular points of the phase diagram: we observe a dynam-
ical phase diagram (Fig. 7).

4.2 Scaling of the concentration profiles and
corrections to the order parameter

Both for analytical considerations and for the numerical
solution of the model it is convenient to consider open
systems as well as closed fixed boundary systems which

(a)

(b)

Fig. 7. Order parameter η from the resolution of equations
(20, 21) in a system with fixed boundaries, for different times.
(a) At T/TMF

c = 0.95, (b) at T/TMF
c = 0.67. The ordering is

progressively established and becomes stable (solid curve). The
curve η(p) is rounded by finite size of the sample, leading to a
dynamical phase diagram. The heavy dotted line corresponds
to the static mean field diagram.

lead to stationary profiles. The concentration profile of
an open system from Monte-Carlo simulations is shown
in Figure 2, the dynamical mean field phase diagram re-
sulting from the numerical solution of the equations (20)
and (21) is plotted in Figures 7a and b, for two temper-
atures and different times. Interestingly, as time evolves
there is first a deviation from the mean field diagram,
before the system approaches the static curve with de-
creasing gradient. The plot for p(x, t) = π(x/

√
t) for the

simulation data presented in Figure 3 shows how the scal-
ing limit is approached: after a transitory period (up to
roughly 16000 MCS in Fig. 3) the profile collapses toward
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Fig. 8. Diffusion coefficient from the mean field equation for
the evolution of the average concentration p(x, t) and with
η = ηeq(p) (Eq. (23)), as a function of concentration, for dif-
ferent temperatures T . Deff has been multiplied by a factor
w0 = exp−5|ε|/T for graphical convenience. The dotted lines
correspond to the η = 0 diffusion coefficient (unstable situa-
tion).

Fig. 9. Diffusion coefficient from direct simulations of the
mean field equations, as a function of the concentration p.
There is excellent agreement with the static approximation ex-
cept near the transition points, where the (unphysical) jump
shown by the points C (corresponding to the solution of Eq.
(23)) is smoothed out.

a unique π(x/
√
t) profile over most of its domain. This

evolution corresponds to the rapid relaxation of the or-
der parameter due to the presence of the term of order
zero, δj ≡

{
jA
0 (k)− jB

0 (k)
}

, in equation (21). Remember
that the condition δj = 0, gives ηk = ηeq(pk, T ). When
δj becomes small enough, the second order corrections on
the right hand side of equation (21) become important; a
scaling form η(x, t) = φ(x/

√
t) is then appropriate. The

Monte-Carlo simulations in Figure 4, and the numerical
simulations of (20) and (21) in Figure 7, then show that
η(x, t) as a function of p(x, t) reduces at long times to a
simple function η(p) = η(π[x/

√
t]). In fact this function

is not simply defined by the condition δj = 0, but by
a condition which includes concentration gradients near
the transition points. The evolution of η(p,∆p) towards

ηeq is then linked to the evolution of π(x/
√
t) towards a

quasi-homogeneous profile (when ∇p→ 0).
To sum up, we first observe that after a transitory

regime, the ordered region extends to a much wider con-
centration range than expected by the statics.

4.3 The effective diffusion coefficient Deff

The preceding results also influence the effective diffusion
coefficient. Equations (20, 21) remain valid if we replace
ηeq(p) by the more general η(p, ∂p/∂x) taken from the
above discussion. As equations (20, 21) are too compli-
cated to be solved analytically the effective diffusion co-
efficient can only be obtained numerically. In Figures 5
we show a determination of Deff from a calculation us-
ing the Monte-Carlo method, by applying Fick’s law for
each x value. Figure 9 shows Deff using equations
(20, 21) (crosses). The curve (C) indicates the modifi-
cation of Deff due to ordering using equation (23). We
observe that the values are identical inside the ordered
region, but that finite gradient effects are present around
the critical concentrations pc1

∼= 0.4 and pc2
∼= 0.6 (in the

long tail down to quite low concentrations).

5 Slow relaxation close to the phase
transition points

The approach of the equilibrium is apparently very slow
close to the two transition points pc1 and pc2 , as illus-
trated in Figures 7. In order to understand this behaviour,
we look at the corrections to the asymptotic solutions
η = ηeq(p) and p = π(x/

√
t) of equations (21, 22). The

leading correction from the gradient term of equation (22)
is of order 1/t, with a coefficient that depends on ηeq

and π. At sufficiently long times, the term becomes arbi-
trarily small, except close to the transition points, where
the Laplacian of η dominates and diverges as 1/(η3

eqt).
Therefore the gradient term can no longer be treated as
a small correction close to pc1,2 . It has to be compared
directly with the the dominant δj term, which behaves as
η3 resp. η3

eq. One concludes that the relaxation to equilib-

rium behaves as η ∼= t−1/6 near pc1,2 . The range in η or in
δp ≡ |p−pc| over which this behaviour is valid will dimin-
ish with time, the crossover values evolving as ηx ∼= t−1/6

resp. δpx ≡ |p − pc| ∼= t−1/3. For the gradient term ∇η
we conclude that it relaxes at the critical points despite
the ordering, but at a slower rate, ∇η ∼= δη/δp∇p ∼= t−1/3

instead of ∇η ∼= t−1/2 far from the transitions.
In Figure 10, the maximum value of dη/dx (which is

sharply peaked close to the transitions) is shown as a func-
tion of time for T/Tc = 0.71. It can be fitted very well by
a power law with an exponent −1/3. Similarly, the value
of η at the transitions, pc1 = 0.2327 and pc2 = 0.7673, has
been measured as a function of time; it decreases with the
predicted exponent −1/6.

Finally, we postulate that the correction to the asymp-
totic form for η should have the following scaling form,
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Fig. 10. Evolution of the gradient ∇η/∇x near the transition
points, pc1 = 0.2327 and pc2 = 0.7673 at T/Tc = 0.71. The
maximum of the gradient at the lower (×) respectively the
upper (♦) transition is plotted against time, on a log-log scale.
Both data sets fit a power law with an exponent −0.34± 0.02,
consistent with the theoretical prediction −1/3.

for t→∞ and δp ≡ |p− pc| → 0,

η(x, t) − ηeq(π(x/
√
t)) = t−1/6ϕ±(δp t1/3) (26)

ϕ± being the scaling functions below and above the tran-
sition.

To check this form, we have plotted (η − ηeq) t1/6

against δp t1/3 in Figure 11, for the upper transition. The
data fits the scaling form remarkably well, even for times
as short as t = 15. A similar behaviour is observed for
the lower transition. Note that ϕ crosses the origin, which
means that the asymptotic form is approached from dif-
ferent sides depending on δp.

The kinetic equation of the order parameter, equation
(21), therefore suggests the following overall behaviour of
η: at very short times the evolution of η is driven by the
dominant term

−z(jA
0 (k)− jB

0 (k));

after this initial transitory period, the evolution of η is de-
termined by the finite gradient effects and by the bound-
ary condition. For an open system, the concentration pro-
file evolves towards a quasi homogeneous distribution, and
η(p) approaches ηeq(p). In a finite size system of size L
with a source at an extremity and a sink at the other ex-
tremity, η(p) reaches a smoothed curve ηL(p), which ap-
proaches ηeq(p) for L → ∞. At late times, the dominant
contribution is given explicitly by the term

G(pk, ηk)∆aηk

in equation (21), near the critical concentrations pc1 and
pc2 . The leading time evolution of η can therefore be de-
scribed by the equation

∂ηk

∂t
= −z

(
jA
0 (k)− jB

0 (k)
)

+G(pk, ηk)∆aηk. (27)

6 Conclusion

We conclude that the mean field approximation captures
the main features of the diffusion in presence of ordering
due to repulsive nearest neighbour interactions. The com-
parison between static and dynamic mean field approxi-
mations and Monte-Carlo simulations show that there are
significant effects near the transition points, whereas in-
side the ordered domains respectively far into the homoge-
neous domains there is excellent agreement between static
and dynamic. However, inside the ordered domains the
presence of domain boundaries, along which the diffusion
is easier, leads to a higher diffusion coefficient than one
would expect on the basis of the argument, that the order-
ing prevents diffusion. Only at low temperature, the dif-
fusion may be affected by the very low diffusivity through
the ordered structures.

A discontinuity in the diffusion coefficient as a function
of the concentration is found in first approximation near
the order-disorder transition lines, which is softened when
the finite gradients are included as shown in Figure 9.
There is a very slow convergence, as the concentration
gradients go to zero, towards the limiting behaviour near
the transitions: a discontinuity of the diffusion coefficient.
Therefore — within the mean-field approximation - the
concentration profile p(x) presents discontinuities of its
gradient dp/dx, in the limit of vanishing gradients. Far
from the homogeneous limit, the profile p(x) are softened
around the points pc1 and pc2 in a range δp scaling like
t−1/3 corresponding to a spatial range δx scaling like t1/6.

No such effect can be observed in the Monte-Carlo sim-
ulations. This may be due to the fluctuations, the rela-
tively short time scales (the mean field calculations are
ten times longer and the effects only appear at the latest
times) and the true, i.e. non-classical, transition.

Appendix A: The mean-field approach

In the mean-field approximation, all the operators nk in
the expressions for the jump probabilities wk,k+a are re-
placed by their average concentrations pk. Depending on
the explicit form of the jump operators, different approx-
imations can be obtained.

The general expression for the current can then be
written,

JAB
ij ({p}) = w0

{∏
a′

wr(p
B
i+a′)p

A
i (1− pB

j )

−
∏
a′

wr(p
A
j+a′)p

B
j (1− pA

i )

}
(A.1)

where wr(p
A
i ) = 〈exp− ε

kT nA
i 〉 is the contribution of the

occupation of site i to the jump probability. A similar
expression is obtained for JBA

ji ({p}).
As already noticed above, we will take the average in

the exponential for wr; this average leads to the usual
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Fig. 11. Scaling function of η(x, t) near the upper transition. t1/6 (η(x, t) − ηeq(p(x, t))) is plotted against t1/3δp at times
ranging between t = 15 to t = 10 000. The data collapse very well on a single curve, both below and above the transition.

thermodynamic equilibrium:

wr(p
A
i ) = exp−

ε

kT
pA
i . (A.2)

To introduce conveniently the thermodynamic vari-
ables one can proceed as in reference [20], factorizing the
currents into a contribution S, symmetrical with respect
to the initial and final state, and a factor which is the
difference between a local function C invariant under the
transformations of the local symmetry point group, taken
at the final j and initial i states,

JAB
ij ({p}) = −SAB

ij (CB
j − C

A
i ). (A.3)

This equation, together with the equations of evolution of
the concentrations (9, 10), leads to generalized Allen-Cahn
equations [19].

After identification one finds (up to an arbitrary con-
stant factor c0),

CA
i = c0

pA
i

1− pA
i

∏
a′

wr(p
B
i+a′) (A.3a)

SAB
ij =

w0

c0
(1− pA

i )(1− pB
j ). (A.3b)

From (A.3a) it is possible to introduce what can be iden-
tified to be a chemical potential on each site {i,A} or
{j,B},

µA
i = kT logCA

i and µB
j = kT logCB

j (A.4)

defined via equations (A.2) and (A.3a) (c0 has been chosen
here such that µk0 =⇒ −µk0 when pk =⇒ 1− pk) by,

µA
k = µA

k0

≡ −zε

(
pB
k −

1

2

)
− ε

∑
a′

Da′p
B
k + kT log

pA
k

1− pA
k

(A.4a)

µB
k = µB

k0

≡ −zε

(
pA
k −

1

2

)
− ε

∑
a′

Da′p
A
k + kT log

pB
k

1− pB
k

· (A.4b)

The quantities CA and CB are equivalent to absolute ac-
tivities [16]. Expressions (A.4) derived directly from the
master equations (9, 10), can also be obtained as the ex-
tremum of a free energy 〈F 〉 with the constraint of a fixed

number of particles, δ
{
〈F 〉 − µ1

(∑
i p

A
i +

∑
j p

B
j

)}
= 0,

giving at equilibrium,

µ1 =
∂〈F 〉

∂pA
i

= µA
i0
− µe −

z

2
ε =

∂〈F 〉

∂pB
j

= µB
j0
− µe −

z

2
ε
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with a free energy,

〈F 〉 = F+

∑
i∈{A}

(
−
ε

2

∑
a

pA
i p

B
i+a − µep

A
i

+ kT (pA
i ln pA

i + (1− pA
i ) ln(1− pB

j ))

)
×
∑
j∈{B}

(
−
ε

2

∑
a

pB
j p

A
j+a − µep

B
j

+ kT (pB
j ln pB

j + (1− pB
j ) ln(1− pB

j ))

)
. (A.5)

The symmetry between particles and holes, leading to re-
lations (A.4), can be made visible by taking advantage of
the arbitrariness (choice of the zero of energies) of µe (or
of c0): µe = kT log c0 = − z2ε so that at equilibrium,

µ1 =
∂〈F 〉

∂pA
i

≡ µA
i0 =

∂〈F 〉

∂pB
j

≡ µB
j0. (A.5a)

Using SES, we now choose a situation with concentrations
pA
k and pB

k defined on each site k, and initially slowly vary-
ing in space. Introducing ∆F = 2{〈F 〉−F0} as a sum over
all lattice sites k,

∆F = −ε
∑
k,a

pA
k p

B
k+a

+
∑
k

(
−µep

A
k + kT

(
pA
k ln pA

k + (1− pA
k ) ln(1− pA

k )
))

+
∑
k

(
−µep

B
k + kT

(
pB
k ln pB

k + (1− pB
k ) ln(1− pB

k )
))
.

(A.5b)

From relation (A.4), the current (Eq. (A.3)) can be written
in a generalized Cahn-Hilliard form, a

JAB
ij ({p}) = −MAB

ij (µB
j − µ

A
i ) (A.6a)

with a mobility M , given in first approximation (by lin-
earization of Eq. (A.3) the small parameter being ∆µ =
µB
j − µA

i , and with all p’s replaced by their equilibrium
values) by,

MAB
ij ({p}) ∼= βSAB

ij

√
CA
i C

B
j . (A.6b)

Far from equilibrium, the corrections due to the non
homogeneous chemical potential are implicitly included
in the mobility (using Eqs. (A.3, A.4, A.6a), see also Eq.
(12c) of Ref. [20]).

Appendix B: The order-disorder transition

The mean-field phase diagram can be obtained by set-
ting the currents to zero (Eq. (A.1)), in an homogeneous
medium:

pA
i ≡ p

A and pB
j ≡ p

B for any i and j,

and by fixing (using (A.1, A.3)) the chemical potentials,
associated with a given temperature T and a fixed average
concentration p0:

µA
i ≡ µ

B
j ≡ µm for any i and j.

It is more suitable to change the variables and to intro-
duce, using the SES approach, the average concentration
pk and the order parameter ηk:

pk ≡
pA
k + pB

k

2
, ηk ≡

pA
k − p

B
k

2
· (B.1)

The phase diagram is defined starting from equation (A.4)
with, pk ≡ p = (pA+pB)/2, and ηk ≡ η = (pA−pB)/2 = 0,
that is to say by the equation,

−zεpB + kT log
pA

1− pA
= −zεpA + kT log

pB

1− pB
· (B.2)

This equation is conveniently solved by considering the
function,

f(u) = zε

(
u−

1

2

)
+ kT log

u

1− u
(B.3)

related to the chemical potentials of homogeneous concen-
trations by

µA = f(pA)− 2zε

(
p−

1

2

)
(B.4a)

µB = f(pB)− 2zε

(
p−

1

2

)
(B.4b)

so that (B.2) becomes

f(pA) = f(pB). (B.5)

Using equation (A.4), this defines an equation for p and
η. The corresponding phase diagram is shown in Figure 6.
The diagram is symmetrical with respect to p = 1/2; the
critical mean-field temperature is kTMF

c = −zε/4.
At equilibrium the temperature is then a function of p

and η given by the equation (solving (B.3) and (B.5)),

kT (p, η) = −
2εzη

log

(
1−

2η

(p− 1
2 )2 − (η − 1

2 )2

) · (B.6)

The coexistence curve is then simply given by the η = 0
limit,

kT (p, 0) = −εzp(1− p). (B.7)

Needless to say that the mean field phase diagram only
gives a qualitative idea of the true phase diagram, espe-
cially near the transition. The latter has for instance been
estimated by Binder and Landau [24] by Monte-Carlo cal-
culations.
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